Algae in the Marine Environment

Michele Stanley Michele.Stanley@sams.ac.uk SAMS ReBalance, Stirling August 2013

Red Tide, La Jolla, California

- *Karenia brevis* algae blooms red tides
- Red tides, like this one in La Jolla, California, can form as a result of nutrient pollution

. Photo Credit: P. Alejandro Díaz | English Wikipedia

Mail Online- Slimewatch UK: 8inch-thick carpet of algae is clogging South Coast

- UK- Portsmouth mud flats
- France- Brittany 60,000 tonnes

Read more: http://www.dailymail.co.uk/sciencetech/article-1207817/Coastal-wildlife-threatened-vast-seaweed-bloomscaused-hot-rainy

Seaweed to biofuel: not a new idea, but time to revisit the technology.....

- As long ago as 1974, Americans looked for a renewable source of methane (natural gas) from the seas
- Their data showed that high levels of methane could be readily produced from seaweed
- However then, off-shore seaweed farms were a failure
- Since then seaweed aquaculture has developed on a massive scale

Sources of seaweed for biofuels

Kelp aquaculture?

Subtidal kelp?

Beach-cast kelp? (wrack)

Seaweed fermented to make bioethanol or anaerobically digested to make biogas (methane)

447 TJ of energy to be generated from macroalgae by 2020. ~0.2% of current national road-fuel demands.

Hughes et al (2012) Biotechnology for Biofuels

What is the bioenergy potential?

Example of beach cast kelp washed ashore after storms, November 2011, North Uist, Scotland

TOTAL biomass of beach cast estimated in the <u>entire Outer Hebrides:</u>

210 000 tons/year (Walker 1954)¹

= 4.62 x 10⁶m³ methane

enough methane to heat 2874 houses
(24% of total households)

- Equivalent to ~ 5 000 000 liters petrol

Where: ²One wet ton of seaweed yields 22 m³ of methane with a gross calorific value of 39.8 MJ/m. ³One m³ biogas is equivalent to 1.1 liters petrol²

Walker, F. T. (1954). "Distribution of Laminariaceae around Scotland." <u>Journal du Conseil 20(2): 160-166. ²Bruton, T., H. Lyons, et al. (2009). A Review</u> of the Potential of Marine Algae as a Source of Biofuel in Ireland, Sustainable Energy Ireland., ³http://www.balticbiogasbus.eu/web/about-biogas.aspx

Integrated Multi-Trophic Aquaculture (IMTA)?

Bioremediation

- Palmaria palmata (growth rate 48% and biomass 63%)
- Saccharina latissima (growth rate 61% and biomass 27%)

Placement of seaweed- nitrogen content increases as you get closer to the fish cages

Potential to remove 5% to 12% of waste nitrogen from 500 tonnes salmon farm over 2 yrs

(ref. Sanderson et al (2012) Aquaculture)

Technology Strategy Board Driving Innovation

Knowledge Transfer Network

Biosciences

Nutraceuticals and Cosmoceuticals (above £2,000 per kg)

Speciality Products (£5 to £1,000 per kg)

Added Value Commodities (£1 per kg to £5 per kg)

Base Commodities (Fuels,Energy), Feed and Bioremediation Services (up to £1 per kg)

Value Pyramid for Algal Derived Products (modified from Subitec Value Pyramid for Algae Product Markets in Bruton et al, 2009)

Technology Strategy Board Driving Innovation

Research Needs in Ecosystem Services to Support Algal Biofuels, Bioenergy and Commodity Chemicals Production in the UK

February 2012

A Project for the Algal Bioenergy Special Interest Group

https://connect.innovateuk.org/web/algal-biotechnology-specialinterest-group/document-library Knowledge Transfer Network

Biosciences

Technology Strategy Board Driving Innovation

Knowledge Transfer Network

Biosciences

Technology [⊠]	Availability /	Environmental	Environmental	UK	UK	Ħ
	Potential	Risks [⊠]	Benefits [⊠]	Capability	Potential	
Inputs ^{II}	Ц	Щ	Щ	Ц	Ħ	Π
Wastewater treatment¤	34	X	X) I	3.6	Ħ
Industrial CO ₂ use¤	X	×	×	X	20	Ħ
Biomass Production ^{II}	Ħ	Ħ	H	Ħ	Ц	Ħ
Photobioreactors¤	H .	ä	×	22	X	Ħ
Open Ponds¤	X	E8	×	×	Ä	Ħ
Macroalgae in Sea¤	X	X	22	24	X	Ħ
Microalgae in Open Sea¤	22	×	×	X	88	μ
Microalgae in enclosed membranes in Sea¤	×	98	22	×	X	Ħ
Driftweed/Wrack¤	×	×	×	×	×	Ħ
On Land Tanks¤	×	X	×	×	M	Ħ
Standing Stocks ^{II}	×	×	×	2	X	Ħ
Conversion Processes ^{II}	Ħ	Ħ	Ħ	Ц	Ц	Ħ
Heterotrophic ¹¹	X	X	×	24	Hange (1997)	Π
Anaerobic Digestion¤	X	×	X	X	×	Π
Sugar Fermentation	X	×	×	22	X	Ħ
Hydrothermal Processes	×	88	×	8	×	Ħ
Extraction¤	X	×	X	22	22	Ħ
•••						

Key: low availability/high or detrimental impact, low impact, intermediate availability / intermediate impact.

From the SRA-11 Research challenges (highlighted in blue) associated with the large-scale use of macro and microalgal feedstocks for biofuel and commodity chemicals production. The realisation of these research areas will also be dependent upon a specific enabling action (highlighted in red)

Key Questions

- Key environmental factors influencing yield and biochemical composition.
- Site selection.
- Develop life cycle assessment
 - Carbon balance
 - Sustainability information suitable for aquatic and marine systems.
- Identify the role of algae in carbon and nutrient cycling.
- Understand to what extent algal cultivation affects biodiversity in the farm, the water column and benthic environment.

Thank You

Technology Strategy Board Driving Innovation

European Union European Regional Development Fund Investing in your future

Knowledge

Transfer

Network

Biosciences

Project supported by the INTERREG IVA Programme Managed by SEUPB

Department of Communications, Energy and Natural Resources Roinn Cumarsáide, Fuinnimh agus Acmhainní Nádúrtha